
Qi4j - Abstract Composites

Rickard Öberg

Agenda

Agenda

:: What is an Abstract Composite?
:: Abstract Composite structure
:: Abstract Composite examples

:: Default Constraints
:: Generic Mixins
:: Caching
:: Aggregation
:: Validation

What is an Abstract
Composite?

What is an Abstract
Composite?

:: Qi4j contains reusable Fragments

What is an Abstract
Composite?

:: Qi4j contains reusable Fragments
:: Constraints

What is an Abstract
Composite?

:: Qi4j contains reusable Fragments
:: Constraints
:: Assertions

What is an Abstract
Composite?

:: Qi4j contains reusable Fragments
:: Constraints
:: Assertions
:: SideEffects

What is an Abstract
Composite?

:: Qi4j contains reusable Fragments
:: Constraints
:: Assertions
:: SideEffects
:: Mixins

What is an Abstract
Composite?

:: Qi4j contains reusable Fragments
:: Constraints
:: Assertions
:: SideEffects
:: Mixins

:: Can be grouped together in extendable
Abstract Composite interfaces for easy reuse

What is an Abstract
Composite?

:: Qi4j contains reusable Fragments
:: Constraints
:: Assertions
:: SideEffects
:: Mixins

:: Can be grouped together in extendable
Abstract Composite interfaces for easy reuse
:: Examples: Caching, Default constraints,

Aggregation

Abstract Composite
structure

Abstract Composite
structure

:: Abstract Composites are regular Composite
interfaces which declare a number of
Fragments

Abstract Composite
structure

:: Abstract Composites are regular Composite
interfaces which declare a number of
Fragments

:: Useless on their own

Abstract Composite
structure

:: Abstract Composites are regular Composite
interfaces which declare a number of
Fragments

:: Useless on their own
:: Extend it to use

Abstract Composite
structure

:: Abstract Composites are regular Composite
interfaces which declare a number of
Fragments

:: Useless on their own
:: Extend it to use
:: A Composite can extend many Abstract

Composites at the same time

Abstract Composite
structure

:: Abstract Composites are regular Composite
interfaces which declare a number of
Fragments

:: Useless on their own
:: Extend it to use
:: A Composite can extend many Abstract

Composites at the same time
:: Check what annotations are used by the

Fragments in the Abstract Composite

Composite extends MyAbstractComposite

SideEffect

Assertion

Constraint

Mixin Mixin Reusable
Mixin

Reusable Assertion

Standard Abstract
Composites

Standard Abstract
Composites

:: Some Abstract Composites provide library
functionality

Standard Abstract
Composites

:: Some Abstract Composites provide library
functionality

:: It can be useful for a project to have a
“StandardAbstractComposite” base interface
that all domain Composites extend from, and
which extends other Abstract Composites

Standard Abstract
Composites

:: Some Abstract Composites provide library
functionality

:: It can be useful for a project to have a
“StandardAbstractComposite” base interface
that all domain Composites extend from, and
which extends other Abstract Composites

:: Makes it easy to add/remove standard
functionality later on

Default constraints
HelloWorldComposite.java:
public interface HelloWorldComposite
 extends StandardComposite
{
 @Cached String say();

 void setPhrase(@NonEmptyString @Contains("H")String phrase)
 throws ValidationException;

 String getPhrase();

 void setName(@NotNull @Matches("Universe|World")String name)
 throws ValidationException;

 String getName();
}

HelloWorldComposite.say.js:
function say()
{
 return phrase + " " + name;
}

HelloWorldComposite.properties:
phrase.not.null=Phrase may not be null
phrase.contains=Phrase "{0}" must contain the string "{1}"
phrase.min.length=Length of phrase "{0}" is too short. It must be at least {1} characters
name.not.null=Name may not be null
name.matches=Name must be either Universe or World

Default constraints
StandardComposite.java:
@Assertions(ReturnCachedValueAssertion.class)
public interface StandardAbstractComposite
 extends InvocationCacheAbstractComposite, DefaultConstraintsAbstractComposite,
ValidatableAbstractComposite, GenericMixinsAbstractComposite
{
}

Abstract Composites in
Qi4j

Abstract Composites in
Qi4j

:: A number of Abstract Composites are
available in Qi4j

Abstract Composites in
Qi4j

:: A number of Abstract Composites are
available in Qi4j

:: Implements a number of common usecases

Default Constraints

Default Constraints

:: Defines and declares a number of commonly useful
annotations and Constraints

Default Constraints

:: Defines and declares a number of commonly useful
annotations and Constraints

:: Extend DefaultConstraintsAbstractComposite to use

Default Constraints
@Constraints({ NotNullConstraint.class,
 MinLengthConstraint.class,
 MaxLengthConstraint.class,
 GreaterThanConstraint.class,
 LessThanConstraint.class,
 ContainsConstraint.class,
 MatchesConstraint.class })
public interface DefaultConstraintsAbstractComposite
{
}

Generic Mixins

Generic Mixins
:: Qi4j contains a number of Generic Mixins

Generic Mixins
:: Qi4j contains a number of Generic Mixins
:: Provides implementations based on

conventions

Generic Mixins
:: Qi4j contains a number of Generic Mixins
:: Provides implementations based on

conventions
:: PropertiesMixin - get/set/add/remove

Generic Mixins
:: Qi4j contains a number of Generic Mixins
:: Provides implementations based on

conventions
:: PropertiesMixin - get/set/add/remove
:: FinderMixin - findByNameOrEmail

Generic Mixins
:: Qi4j contains a number of Generic Mixins
:: Provides implementations based on

conventions
:: PropertiesMixin - get/set/add/remove
:: FinderMixin - findByNameOrEmail

:: Provides implementations for scripting

Generic Mixins
:: Qi4j contains a number of Generic Mixins
:: Provides implementations based on

conventions
:: PropertiesMixin - get/set/add/remove
:: FinderMixin - findByNameOrEmail

:: Provides implementations for scripting
:: JavaScriptMixin

Generic Mixins
:: Qi4j contains a number of Generic Mixins
:: Provides implementations based on

conventions
:: PropertiesMixin - get/set/add/remove
:: FinderMixin - findByNameOrEmail

:: Provides implementations for scripting
:: JavaScriptMixin

:: Provides implementations for infrastructure
delegation

Generic Mixins
:: Qi4j contains a number of Generic Mixins
:: Provides implementations based on

conventions
:: PropertiesMixin - get/set/add/remove
:: FinderMixin - findByNameOrEmail

:: Provides implementations for scripting
:: JavaScriptMixin

:: Provides implementations for infrastructure
delegation
:: RMIMixin

Generic Mixins
:: Qi4j contains a number of Generic Mixins
:: Provides implementations based on

conventions
:: PropertiesMixin - get/set/add/remove
:: FinderMixin - findByNameOrEmail

:: Provides implementations for scripting
:: JavaScriptMixin

:: Provides implementations for infrastructure
delegation
:: RMIMixin

:: NoopMixin - can handle anything!

PropertiesMixin example
public interface Foo
{
 void setBar(String name);
 String getBar();

 void addXYZ(Xyz xyzzy);
 void removeXYZ(Xyz xyzzy);
 Iterable<Xyz> getXyzzy();
}

FinderMixin example
public interface PeopleFinder
{
 PersonComposite findByName(String name);

 Iterable<PersonComposite> findByZipCode(String ZipCode);
}

JavaScriptMixin example
public interface HelloWorldComposite
 extends StandardAbstractComposite
{
 @Cached String say();

 void setPhrase(@NonEmptyString @Contains("H")String phrase)
 throws ValidationException;

 String getPhrase();

 void setName(@NotNull @Matches("Universe|World")String name)
 throws ValidationException;

 String getName();
}

HelloWorldComposite.say.js:
function say()
{
 return phrase + " " + name;
}

RMIMixin example
@Mixins(RMIMixin.class)
public interface RemoteInterfaceComposite
 extends RemoteInterface, InvocationCacheAbstractComposite, Composite
{
}

@Cached
public interface RemoteInterface
 extends Remote
{
 String foo(String aBar)
 throws IOException;
}

RemoteInterfaceImpl remoteObject = new RemoteInterfaceImpl();
RemoteInterface stub = (RemoteInterface) UnicastRemoteObject.exportObject(remoteObject,
0);
Registry registry = LocateRegistry.createRegistry(1099);
registry.rebind(RemoteInterface.class.getSimpleName(), stub);

CompositeBuilderFactory factory = new CompositeBuilderFactoryImpl();
RemoteInterface remote = factory.newCompositeBuilder
(RemoteInterfaceComposite.class).newInstance();

System.out.println(remote.foo("Bar"));

DecoratorMixin example
public class DecoratorMixin
 implements InvocationHandler
{
 Object delegate;
 public DecoratorMixin(@Decorate Object delegate)
 {
 this.delegate = delegate;
 }
 public Object invoke(Object object, Method method, Object[] args) throws Throwable
 {
 if(delegate instanceof InvocationHandler)
 {
 InvocationHandler handler = (InvocationHandler) delegate;
 return handler.invoke(object, method, args);
 }
 else
 {
 try
 {
 return method.invoke(delegate, args);
 }
 catch(InvocationTargetException e)
 {
 throw e.getCause();
 }
 }
 }
}

Invocation Caching

Invocation Caching

:: If a method call is expensive, use result
caching to avoid unnecessary computation

Invocation Caching

:: If a method call is expensive, use result
caching to avoid unnecessary computation

:: Can be used in distributed setups to mask
connection errors

Invocation Caching

:: If a method call is expensive, use result
caching to avoid unnecessary computation

:: Can be used in distributed setups to mask
connection errors

:: InvocationCacheAbstractComposite provides
a number of Mixins, Assertions and
SideEffects that implement caching for you

Invocation Caching

:: If a method call is expensive, use result
caching to avoid unnecessary computation

:: Can be used in distributed setups to mask
connection errors

:: InvocationCacheAbstractComposite provides
a number of Mixins, Assertions and
SideEffects that implement caching for you

:: Trigger using @Cached annotation on
methods, in domain interface or Mixin

Invocation Caching

Invocation Caching
:: Trigger using @Cached annotation on

methods

Invocation Caching
:: Trigger using @Cached annotation on

methods
:: Method results are cached with

method name+arguments as key as a
SideEffect

Invocation Caching
:: Trigger using @Cached annotation on

methods
:: Method results are cached with

method name+arguments as key as a
SideEffect

:: Cache-aware Assertions return cached values
always or only on exception

Invocation Caching
:: Trigger using @Cached annotation on

methods
:: Method results are cached with

method name+arguments as key as a
SideEffect

:: Cache-aware Assertions return cached values
always or only on exception

:: Invalidate cache explicitly using
InvocationCache interface or implicitly using
SideEffects on setters

InvocationCaching Example
public interface HelloWorldComposite
 extends InvocationCacheAbstractComposite
{
 @Cached String say();

 void setPhrase(String phrase);

 String getPhrase();

 void setName(String name);

 String getName();
}

Aggregation

Aggregation
:: When working with persistent objects

(Entities) it is often useful to express
Aggregates

Aggregation
:: When working with persistent objects

(Entities) it is often useful to express
Aggregates
:: Common lifecycle

Aggregation
:: When working with persistent objects

(Entities) it is often useful to express
Aggregates
:: Common lifecycle
:: Common validation rules

Aggregation
:: When working with persistent objects

(Entities) it is often useful to express
Aggregates
:: Common lifecycle
:: Common validation rules

:: Aggregated objects implements the interface
Aggregated

Aggregation
:: When working with persistent objects

(Entities) it is often useful to express
Aggregates
:: Common lifecycle
:: Common validation rules

:: Aggregated objects implements the interface
Aggregated
:: AggregatedMixin contains reference to

“owning” object

Aggregation
:: When working with persistent objects

(Entities) it is often useful to express
Aggregates
:: Common lifecycle
:: Common validation rules

:: Aggregated objects implements the interface
Aggregated
:: AggregatedMixin contains reference to

“owning” object
:: Owning objects may be Aggregated

themselves

Aggregation tree

Root

Aggregated
object

Aggregated
object

Aggregated
object

Aggregated
object

Aggregation Example
public abstract class AggregateValidationAssertion
 implements Validatable
{
 @ThisAs Aggregated aggregated;
 @AssertionFor Validatable next;

 public List<ValidationMessage> validate()
 {
 List<ValidationMessage> messages = next.validate();

 Object aggregator = aggregated.getAggregate();
 if(aggregator instanceof Validatable)
 {
 Validatable aggregatorValidation = (Validatable) aggregator;
 messages.addAll(aggregatorValidation.validate());

 }
 return messages;
 }
}

Validation

Validation

:: Often there are business rules that needs
to be checked to verify that an object is in
a valid state

Validation

:: Often there are business rules that needs
to be checked to verify that an object is in
a valid state

:: Check either statically (isValid) or
dynamically (Assertion)

Validation

:: Often there are business rules that needs
to be checked to verify that an object is in
a valid state

:: Check either statically (isValid) or
dynamically (Assertion)

:: Many validation problems may need to be
collected

Validation

:: Often there are business rules that needs
to be checked to verify that an object is in
a valid state

:: Check either statically (isValid) or
dynamically (Assertion)

:: Many validation problems may need to be
collected
:: Web form

ValidatableAbstractComposite
@Assertions({ ValidatableMessagesAssertion.class, ConstraintValidationAssertion.class,
ChangeValidationAssertion.class })
@Mixins({ ValidatableMixin.class, ValidationMessagesMixin.class })
public interface ValidatableAbstractComposite
 extends Validatable, Composite
{
}

Validatable Example
public final class NoDuplicateNamesValidatableAssertion
 extends AbstractValidatableAssertion
{
 @ThisAs Folder folder;

 @Override protected void isValid(Validator validator)
 {
 Set<String> names = new HashSet<String>();
 for(Nameable nameableChild : folder.getChildren())
 {
 validator.error(names.contains(nameableChild.getName()), “duplicate.name”);
 names.add(nameableChild.getName());
 }
 }
}

Questions?

