
Qi4j - Dependency Injection

Rickard Öberg

Agenda

Agenda

:: What is Dependency Injection?

Agenda

:: What is Dependency Injection?
:: Why use Dependency Injection?

Agenda

:: What is Dependency Injection?
:: Why use Dependency Injection?
:: Domain-oriented injection

Agenda

:: What is Dependency Injection?
:: Why use Dependency Injection?
:: Domain-oriented injection
:: DI in Qi4j

Agenda

:: What is Dependency Injection?
:: Why use Dependency Injection?
:: Domain-oriented injection
:: DI in Qi4j
:: Dependency scopes in Qi4j

What is Dependency
Injection?

What is Dependency
Injection?

:: How does code access other objects?

What is Dependency
Injection?

:: How does code access other objects?
:: Instantiation

What is Dependency
Injection?

:: How does code access other objects?
:: Instantiation
:: Service locator

What is Dependency
Injection?

:: How does code access other objects?
:: Instantiation
:: Service locator
:: Allow user to “inject” dependencies through

constructors or methods

Why use Dependency
Injection?

Why use Dependency
Injection?

:: Put assumptions in one place

Why use Dependency
Injection?

:: Put assumptions in one place
:: Makes reuse easier

Why use Dependency
Injection?

:: Put assumptions in one place
:: Makes reuse easier
:: Makes testing easier

Why use Dependency
Injection?

:: Put assumptions in one place
:: Makes reuse easier
:: Makes testing easier
:: Makes code clearer

Why use Dependency
Injection?

:: Put assumptions in one place
:: Makes reuse easier
:: Makes testing easier
:: Makes code clearer
:: Reduces coupling on infrastructure

Why use Dependency
Injection?

:: Put assumptions in one place
:: Makes reuse easier
:: Makes testing easier
:: Makes code clearer
:: Reduces coupling on infrastructure

:: Makes dependencies more explicit

Domain-oriented
injection

Domain-oriented
injection

:: “When all you have is Object everything
looks like a dependency”

Domain-oriented
injection

:: “When all you have is Object everything
looks like a dependency”

:: Injected objects usually have pattern roles

Domain-oriented
injection

:: “When all you have is Object everything
looks like a dependency”

:: Injected objects usually have pattern roles
:: Adapter

Domain-oriented
injection

:: “When all you have is Object everything
looks like a dependency”

:: Injected objects usually have pattern roles
:: Adapter
:: Decorator

Domain-oriented
injection

:: “When all you have is Object everything
looks like a dependency”

:: Injected objects usually have pattern roles
:: Adapter
:: Decorator
:: Service

Domain-oriented
injection

:: “When all you have is Object everything
looks like a dependency”

:: Injected objects usually have pattern roles
:: Adapter
:: Decorator
:: Service

:: Not all objects can fulfill all roles

Domain-oriented
injection

:: “When all you have is Object everything
looks like a dependency”

:: Injected objects usually have pattern roles
:: Adapter
:: Decorator
:: Service

:: Not all objects can fulfill all roles
:: Let injection be domain-oriented

Domain-oriented
injection

:: “When all you have is Object everything
looks like a dependency”

:: Injected objects usually have pattern roles
:: Adapter
:: Decorator
:: Service

:: Not all objects can fulfill all roles
:: Let injection be domain-oriented

:: @Inject -> @Service

DI in Qi4j

DI in Qi4j

:: Uses annotations to declare dependencies

DI in Qi4j

:: Uses annotations to declare dependencies
:: Each annotation has @DependencyScope

DI in Qi4j

:: Uses annotations to declare dependencies
:: Each annotation has @DependencyScope

:: You can create your own scopes

DI in Qi4j

:: Uses annotations to declare dependencies
:: Each annotation has @DependencyScope

:: You can create your own scopes
:: Each scope has its own resolver

DI in Qi4j

:: Uses annotations to declare dependencies
:: Each annotation has @DependencyScope

:: You can create your own scopes
:: Each scope has its own resolver
:: DI is done in two phases

DI in Qi4j

:: Uses annotations to declare dependencies
:: Each annotation has @DependencyScope

:: You can create your own scopes
:: Each scope has its own resolver
:: DI is done in two phases

:: Resolution - once

DI in Qi4j

:: Uses annotations to declare dependencies
:: Each annotation has @DependencyScope

:: You can create your own scopes
:: Each scope has its own resolver
:: DI is done in two phases

:: Resolution - once
:: Injection - many times

DI in Qi4j

:: Uses annotations to declare dependencies
:: Each annotation has @DependencyScope

:: You can create your own scopes
:: Each scope has its own resolver
:: DI is done in two phases

:: Resolution - once
:: Injection - many times
:: Fast!

DI in Qi4j

:: Uses annotations to declare dependencies
:: Each annotation has @DependencyScope

:: You can create your own scopes
:: Each scope has its own resolver
:: DI is done in two phases

:: Resolution - once
:: Injection - many times
:: Fast!

:: Some scopes allow optional injection

DI in Qi4j

:: Uses annotations to declare dependencies
:: Each annotation has @DependencyScope

:: You can create your own scopes
:: Each scope has its own resolver
:: DI is done in two phases

:: Resolution - once
:: Injection - many times
:: Fast!

:: Some scopes allow optional injection
:: @Service(optional=true)

DI in Qi4j

DI in Qi4j

:: Injection can be done on constructor
parameters, fields and method
parameters (in that order)

DI in Qi4j

:: Injection can be done on constructor
parameters, fields and method
parameters (in that order)

:: Injection is set per-parameter, so one
constructor or method can have multiple
injections

DI in Qi4j

:: Injection can be done on constructor
parameters, fields and method
parameters (in that order)

:: Injection is set per-parameter, so one
constructor or method can have multiple
injections

:: All parameters must be injected

DI in Qi4j

:: Injection can be done on constructor
parameters, fields and method
parameters (in that order)

:: Injection is set per-parameter, so one
constructor or method can have multiple
injections

:: All parameters must be injected
:: Any access modifier can be used

DI in Qi4j

:: Injection can be done on constructor
parameters, fields and method
parameters (in that order)

:: Injection is set per-parameter, so one
constructor or method can have multiple
injections

:: All parameters must be injected
:: Any access modifier can be used

:: private, protected, package protected,
public

DI in Qi4j

DI in Qi4j

:: Injection can be done both Fragments
and regular Objects

DI in Qi4j

:: Injection can be done both Fragments
and regular Objects

:: Use to let Objects gain references to
Qi4j constructs easily

DI in Qi4j

:: Injection can be done both Fragments
and regular Objects

:: Use to let Objects gain references to
Qi4j constructs easily
:: UI’s

DI in Qi4j

:: Injection can be done both Fragments
and regular Objects

:: Use to let Objects gain references to
Qi4j constructs easily
:: UI’s
:: Legacy adapters

DI Example
@AppliesTo(Transactional.class)
public class TransactionConcern
 implements InvocationHandler
{
 @Invocation Transactional transactional;
 TransactionManager tm;
 InvocationHandler next;

 public TransactionConcern(@Service TransactionManager tm)
 {
 this.tm = tm;
 }

 public void setNext(@ConcernFor InvocationHandler next)
 {
 this.next = next;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable
 {

 switch(transactional.value())
 {

 case REQUIRED:
 {
...

DI matching

DI matching

:: Many factors are used to match annotations to
actual injections

DI matching

:: Many factors are used to match annotations to
actual injections
:: Type

DI matching

:: Many factors are used to match annotations to
actual injections
:: Type
:: Name

DI matching

:: Many factors are used to match annotations to
actual injections
:: Type
:: Name

:: @Service(name=”MyService”)

DI matching

:: Many factors are used to match annotations to
actual injections
:: Type
:: Name

:: @Service(name=”MyService”)
:: Generics

DI matching

:: Many factors are used to match annotations to
actual injections
:: Type
:: Name

:: @Service(name=”MyService”)
:: Generics

:: Iterable<MyService>

DI matching

:: Many factors are used to match annotations to
actual injections
:: Type
:: Name

:: @Service(name=”MyService”)
:: Generics

:: Iterable<MyService>
:: Iterable.iterator() may have dynamic value

DI matching

:: Many factors are used to match annotations to
actual injections
:: Type
:: Name

:: @Service(name=”MyService”)
:: Generics

:: Iterable<MyService>
:: Iterable.iterator() may have dynamic value

:: Iterable<Person>

@Service

@Service

:: Use @Service to declare use of services

@Service

:: Use @Service to declare use of services
:: Services are usually stateless singletons

@Service

:: Use @Service to declare use of services
:: Services are usually stateless singletons
:: Use @Service Iterable<MyService> to

allow services to come and go

@Service

:: Use @Service to declare use of services
:: Services are usually stateless singletons
:: Use @Service Iterable<MyService> to

allow services to come and go
:: May have names

@Service

:: Use @Service to declare use of services
:: Services are usually stateless singletons
:: Use @Service Iterable<MyService> to

allow services to come and go
:: May have names

:: @Service(name=”SomeService”)

@Service

:: Use @Service to declare use of services
:: Services are usually stateless singletons
:: Use @Service Iterable<MyService> to

allow services to come and go
:: May have names

:: @Service(name=”SomeService”)
:: May be optional (default is false)

@Service

:: Use @Service to declare use of services
:: Services are usually stateless singletons
:: Use @Service Iterable<MyService> to

allow services to come and go
:: May have names

:: @Service(name=”SomeService”)
:: May be optional (default is false)

:: @Service(optional=true)

Service Example
public class FooMixin
 implements Foo
{
 @Service MyService service;
 @Service Iterable<MyService> services;
 @Service(name=”bar”) MyService service;
 @Service(optional=true) MyService service;

 void init(@Service MyService service, @Service SomeService otherService)
 {
...

@PropertyField

@PropertyField

:: Use @PropertyField on Mixin fields to declare
properties

@PropertyField

:: Use @PropertyField on Mixin fields to declare
properties

:: Property values are set on CompositeBuilder

@PropertyField

:: Use @PropertyField on Mixin fields to declare
properties

:: Property values are set on CompositeBuilder
:: Values are injected after Mixin constructor has

executed

@PropertyField

:: Use @PropertyField on Mixin fields to declare
properties

:: Property values are set on CompositeBuilder
:: Values are injected after Mixin constructor has

executed
:: May have names

@PropertyField

:: Use @PropertyField on Mixin fields to declare
properties

:: Property values are set on CompositeBuilder
:: Values are injected after Mixin constructor has

executed
:: May have names

:: If not, then name of field is used

@PropertyField Example
public final class HelloWorldSettingsMixin
 implements HelloWorldSettings
{
 @PropertyField String phrase = "";
 @PropertyField String name = "";

 public String getPhrase()
 {
 return phrase;
 }

 public void setPhrase(String aPhrase)
 {
 phrase = aPhrase;
 }

 public String getName()
 {
 return name;
 }

 public void setName(String aName)
 {
 name = aName;
 }
}

@PropertyField Example
// Use Composite interface
CompositeBuilder<HelloWorldComposite> builder;
builder = cbf.newCompositeBuilder(HelloWorldComposite.class);
builder.propertiesOfComposite().setPhrase("Hello");
builder.propertiesOfComposite().setName("World");
helloWorld = builder.newInstance();

// Use individual domain interfaces
CompositeBuilder<HelloWorldComposite> builder;
builder = cbf.newCompositeBuilder(HelloWorldComposite.class);
builder.propertiesFor(HelloWorldState.class).setPhrase("Hello");
builder.propertiesFor(HelloWorldState.class).setName("World");
helloWorld = builder.newInstance();

// Use PropertyValue
CompositeBuilder<HelloWorldComposite> builder;
builder = cbf.newCompositeBuilder(HelloWorldComposite.class);

// Set value using name
builder.properties(HelloWorldState.class, PropertyValue.property("phrase", "Hello"));

// Create property using static import of PropertyValue
builder.properties(HelloWorldState.class, property("name", "World"));
helloWorld = builder.newInstance();

@PropertyParameter

@PropertyParameter

:: Use @PropertyParameter on Mixin
constructor or method parameters to declare
properties

@PropertyParameter

:: Use @PropertyParameter on Mixin
constructor or method parameters to declare
properties

:: Property values are set on CompositeBuilder

@PropertyParameter

:: Use @PropertyParameter on Mixin
constructor or method parameters to declare
properties

:: Property values are set on CompositeBuilder
:: Values are injection after Mixin constructor

has executed

@PropertyParameter

:: Use @PropertyParameter on Mixin
constructor or method parameters to declare
properties

:: Property values are set on CompositeBuilder
:: Values are injection after Mixin constructor

has executed
:: Must have names

@PropertyParameter Example
public final class HelloWorldSettingsMixin
 implements HelloWorldSettings
{
 String phrase = "";
 String name = "";

 public HelloWorldSettingsMixin(@PropertyParameter(“phrase”) String phrase,
 @PropertyParameter(“name”) String name)
 {
 this.phrase = phrase;
 this.name = name;
 }

 public String getPhrase()
 {
 return phrase;
 }

 public void setPhrase(String aPhrase)
 {
 phrase = aPhrase;
 }

 public String getName()
 {
 return name;
 }

 public void setName(String aName)
 {
 name = aName;
 }
}

@Adapt

@Adapt

:: Use @Adapt to declare dependency on object
to be used as source in Adapter design pattern

@Adapt

:: Use @Adapt to declare dependency on object
to be used as source in Adapter design pattern

:: Adapted object is set on CompositeBuilder

@Adapt

:: Use @Adapt to declare dependency on object
to be used as source in Adapter design pattern

:: Adapted object is set on CompositeBuilder
:: May be optional

@Adapt Example
public final class MyServiceAdapterMixin
 implements MyService
{
 @Adapt OtherService service;

 public String doThings()
 {
 return service.otherMethod();
 }
}

OtherService otherService = ...;
CompositeBuilder<HelloWorldComposite> builder;
builder = cbf.newCompositeBuilder(MyComposite.class);
builder.adapt(otherService);
myService = builder.newInstance();

myService.doThings();

@Decorate

@Decorate

:: Use @Decorate to declare dependency on
object to be used as source in Decorator
design pattern

@Decorate

:: Use @Decorate to declare dependency on
object to be used as source in Decorator
design pattern

:: Decorated object is set on CompositeBuilder

@Decorate

:: Use @Decorate to declare dependency on
object to be used as source in Decorator
design pattern

:: Decorated object is set on CompositeBuilder
:: Composite must implement interface of

decorated object

@Decorate Example
public final class MyServiceDecoratorMixin
 implements MyService
{
 @Decorate MyService service;

 public String doThings()
 {
 return “Service sez:” + service.doThings();
 }
}

MyService otherService = ...;
CompositeBuilder<HelloWorldComposite> builder;
builder = cbf.newCompositeBuilder(MyComposite.class);
builder.decorate(otherService);
myService = builder.newInstance();

myService.doThings();

@Structure

@Structure

:: Use @Structure to declare dependency on
structural resources

@Structure

:: Use @Structure to declare dependency on
structural resources

:: Provides access to the CompositeBuilderFactory,
Module, Layer, and Application which the
Fragment exists in

@Structure Example
public final class HasDisplayIconMixin
 implements HasDisplayIcon
{
 @Structure CompositeBuilderFactory factory;
 @Structure Layer layer;

 public DisplayIcon getDisplayIcon()
 {
 if (layer.getUsages().size() > 0)
 return null; // Don’t create if we’re not in the UI layer
 CompositeBuilder<MyServicePanelComposite> builder;
 builder = factory.newCompositeBuilder(DisplayIcon.class);
 return builder.newInstance();
 }
}

@Invocation

@Invocation

:: Use @Invocation to declare dependency on
invocation-specific objects

@Invocation

:: Use @Invocation to declare dependency on
invocation-specific objects
:: Method

@Invocation

:: Use @Invocation to declare dependency on
invocation-specific objects
:: Method
:: AnnotatedElement

@Invocation

:: Use @Invocation to declare dependency on
invocation-specific objects
:: Method
:: AnnotatedElement
:: InvocationContext

@Invocation

:: Use @Invocation to declare dependency on
invocation-specific objects
:: Method
:: AnnotatedElement
:: InvocationContext
:: Specific annotations

@Invocation

:: Use @Invocation to declare dependency on
invocation-specific objects
:: Method
:: AnnotatedElement
:: InvocationContext
:: Specific annotations

:: Only legal in Modifiers

@Invocation Example
@AppliesTo(Transactional.class)
public class TransactionConcern
 implements InvocationHandler
{
 @Service TransactionManager tm;
 @Invocation Transactional transactional;
 @ConcernFor InvocationHandler next;

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable
 {

 switch(transactional.value())
 {

 case REQUIRED:
 {
...

@ThisCompositeAs

@ThisCompositeAs

:: Use @ThisCompositeAs to declare dependency
on other Mixins in the same Composite

@ThisCompositeAs

:: Use @ThisCompositeAs to declare dependency
on other Mixins in the same Composite

:: Type must be extended by Composite interface

@ThisCompositeAs

:: Use @ThisCompositeAs to declare dependency
on other Mixins in the same Composite

:: Type must be extended by Composite interface
:: Or, some Mixin must be declared which can

handle it (=private Mixins)

@ThisCompositeAs
public class HelloWorldBehaviourMixin
 implements HelloWorldBehaviour
{
 @ThisCompositeAs HelloWorldState state;

 public String say()
 {
 return state.getPhrase() + " " + state.getName();
 }
}

Private Mixins Example
public class HelloWorldBehaviourMixin
 implements HelloWorldBehaviour
{
 @ThisCompositeAs HelloWorldBehaviourMixin.HelloWorldState state;

 public String say()
 {
 return state.getPhrase() + " " + state.getName();
 }

 public interface HelloWorldState
 {
 void setPhrase(String phrase);
 String getPhrase();
 void setName(String name);
 String getName();
 }
}

@ConcernFor

@ConcernFor

:: Use @ConcernFor in Concerns to have the next
Concern or Mixin in the invocation chain injected

@ConcernFor

:: Use @ConcernFor in Concerns to have the next
Concern or Mixin in the invocation chain injected

:: Type must be an interface of the Composite
which is also implemented by the Concern itself

@ConcernFor

:: Use @ConcernFor in Concerns to have the next
Concern or Mixin in the invocation chain injected

:: Type must be an interface of the Composite
which is also implemented by the Concern itself
:: Can be InvocationHandler for Generic

Concerns

@ConcernFor

:: Use @ConcernFor in Concerns to have the next
Concern or Mixin in the invocation chain injected

:: Type must be an interface of the Composite
which is also implemented by the Concern itself
:: Can be InvocationHandler for Generic

Concerns
:: Concerns MUST have one-and-only-one

@ConcernFor declaration

@ConcernFor Example
public abstract class HelloWorldStateConcern
 implements HelloWorldComposite
{
 @ConcernFor HelloWorldComposite next;

 public void setPhrase(String phrase)
 throws IllegalArgumentException
 {
 if(phrase == null)
 {
 throw new IllegalArgumentException("Phrase may not be null");
 }

 next.setPhrase(phrase);
 }

 public void setName(String name)
 throws IllegalArgumentException
 {
 if(name == null)
 {
 throw new IllegalArgumentException("Name may not be null");
 }

 next.setName(name);
 }
}

@SideEffectFor

@SideEffectFor

:: Use @SideEffectFor in SideEffects to have the a
reference to the result of the invocation injected

@SideEffectFor

:: Use @SideEffectFor in SideEffects to have the a
reference to the result of the invocation injected

:: Type must be an interface of the Composite
which is also implemented by the SideEffect itself

@SideEffectFor

:: Use @SideEffectFor in SideEffects to have the a
reference to the result of the invocation injected

:: Type must be an interface of the Composite
which is also implemented by the SideEffect itself
:: Can be InvocationHandler for Generic

SideEffects

@SideEffectFor

:: Use @SideEffectFor in SideEffects to have the a
reference to the result of the invocation injected

:: Type must be an interface of the Composite
which is also implemented by the SideEffect itself
:: Can be InvocationHandler for Generic

SideEffects
:: SideEffects MUST have one-and-only-one

@SideEffectFor declaration

@SideEffectFor

:: Use @SideEffectFor in SideEffects to have the a
reference to the result of the invocation injected

:: Type must be an interface of the Composite
which is also implemented by the SideEffect itself
:: Can be InvocationHandler for Generic

SideEffects
:: SideEffects MUST have one-and-only-one

@SideEffectFor declaration
:: Not required to actually call the injected

reference

@SideEffectFor Example
@AppliesTo(CountCalls.class)
public class CountCallsSideEffect
 implements InvocationHandler
{
 private @SideEffectFor InvocationHandler next;
 private @ThisCompositeAs Counter counter;

 public Object invoke(Object proxy, Method method, Object[] args) throws Throwable
 {
 counter.increment();
 return next.invoke(proxy, method, args);
 }
}

@Entity

@Entity

:: Use @Entity in Fragments to inject references to
individual Entities, Entity collections or
QueryBuilders for Entities

@Entity

:: Use @Entity in Fragments to inject references to
individual Entities, Entity collections or
QueryBuilders for Entities

:: Type must be a Composite which extends
EntityComposite

@Entity

:: Use @Entity in Fragments to inject references to
individual Entities, Entity collections or
QueryBuilders for Entities

:: Type must be a Composite which extends
EntityComposite

:: Type may use generics for Iterable or
QueryBuilders

@Entity

:: Use @Entity in Fragments to inject references to
individual Entities, Entity collections or
QueryBuilders for Entities

:: Type must be a Composite which extends
EntityComposite

:: Type may use generics for Iterable or
QueryBuilders
:: @Entity Iterable<PersonComposite> iter;

@Entity

:: Use @Entity in Fragments to inject references to
individual Entities, Entity collections or
QueryBuilders for Entities

:: Type must be a Composite which extends
EntityComposite

:: Type may use generics for Iterable or
QueryBuilders
:: @Entity Iterable<PersonComposite> iter;
:: @Entity QueryBuilder<PersonComposite> qb;

@Entity Example
public class TimelineMixin
 implements Timeline
{
 QueryBuilder<EventComposite> events;

 public TimelineMixin(@Entity QueryBuilder<EventComposite> timelineEvents,
 @ThisCompositeAs Period period)
 {
 Period p = timelineEvents.parameter(Period.class);
 this.events = timelineEvents.where(ge(p.getStart(), period.getStart()))
 .where(le(p.getEnd(), period.getEnd()))
 .orderBy(p.getStart());
 }

 public QueryBuilder<EventComposite> getEvents()
 {
 return events;
 }
}

Questions?

